GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2

نویسنده

  • Robert A. Berner
چکیده

A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204] for CO2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O2 [Berner R.A., 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O2 of using different initial starting conditions; (3) the effect on O2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic dC for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O2 of varying the size of O2 feedback during sedimentary pyrite formation; (5) the effect on O2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306 (in press)]. Results show a similar trend of atmospheric CO2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O2 in the Permian, a secondary less-broad peak centered near the Silurian/Devonian boundary, variation between 15% and 20% O2 during the Cambrian and Ordovician, a very sharp drop from 30% to 15% O2 at the Permo-Triassic boundary, and a more-or less continuous rise in O2 from the late Triassic to the present. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geologic Constraints on the Glacial Amplification of Phanerozoic Climate Sensitivity

The long-term carbon cycle depends on many feedbacks. Silicate weathering consumes atmospheric CO2, but is also enhanced by the increased temperatures brought about by this important greenhouse gas. The long-term sensitivity T2x of climate to CO2-doubling modulates the strength of this negative feedback. We update the model-experiment of Royer and others (2007) by estimating an empirical probab...

متن کامل

Genome-wide transcriptomic analysis of the effects of sub-ambient atmospheric oxygen and elevated atmospheric carbon dioxide levels on gametophytes of the moss, Physcomitrella patens

It is widely accepted that atmospheric O2 has played a key role in the development of life on Earth, as evident from the coincidence between the rise of atmospheric O2 concentrations in the Precambrian and biological evolution. Additionally, it has also been suggested that low atmospheric O2 is one of the major drivers for at least two of the five mass-extinction events in the Phanerozoic. At t...

متن کامل

Modeling atmospheric O2 over Phanerozoic time

A carbon and sulfur isotope mass balance model has been constructed for calculating the variation of atmospheric O2 over Phanerozoic time. In order to obtain realistic O2 levels, rapid sediment recycling and O2-dependent isotope fractionation have been employed by the modelling. The dependence of isotope fractionation on O2 is based, for carbon, on the results of laboratory photosynthesis exper...

متن کامل

Sedimentary Corg : P ratios , paleocean ventilation , and Phanerozoic atmospheric pO 2

The Corg:P ratios of organic-rich facies (TOCN1%) exhibit considerable variation through the Phanerozoic, from b10:1 in the Permian Phosphoria Formation to N1000:1 in some Devonian black shales. Relative to the composition of phytoplankton (C:P ∼106:1), which provide the bulk of organic C and P to organic-rich marine sediments, the range of Phanerozoic sedimentary Corg:P ratios largely reflects...

متن کامل

Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning

A three dimensional, time-evolving field of atmospheric potential oxygen (APO ∼O2/N2+CO2) was estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes were also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The modeled seasonal cycles in APO agree well with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006